199656900=x^2/126

Simple and best practice solution for 199656900=x^2/126 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 199656900=x^2/126 equation:



199656900=x^2/126
We move all terms to the left:
199656900-(x^2/126)=0
We get rid of parentheses
-x^2/126+199656900=0
We multiply all the terms by the denominator
-x^2+199656900*126=0
We add all the numbers together, and all the variables
-1x^2+25156769400=0
a = -1; b = 0; c = +25156769400;
Δ = b2-4ac
Δ = 02-4·(-1)·25156769400
Δ = 100627077600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{100627077600}=\sqrt{7187648400*14}=\sqrt{7187648400}*\sqrt{14}=84780\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84780\sqrt{14}}{2*-1}=\frac{0-84780\sqrt{14}}{-2} =-\frac{84780\sqrt{14}}{-2} =-\frac{42390\sqrt{14}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84780\sqrt{14}}{2*-1}=\frac{0+84780\sqrt{14}}{-2} =\frac{84780\sqrt{14}}{-2} =\frac{42390\sqrt{14}}{-1} $

See similar equations:

| 7d+20=10d+14 | | 3=t+4–t | | ​z/​​4​​=​5​/​12​​ | | 20=3v+8 | | x2+3=0 | | 2/5x-11=17 | | -43=-8c | | 69=13^x | | 23.07+y=64.19 | | 2x/5+3/10=1/2 | | -3/4y+9=19 | | 10+3x/5+3=4x | | 5/3=k | | 4(x-7)+3(x+2)=-36 | | (3x+5)+(10-7)=180 | | 12x-5=11x | | 8(5=5x)+2=82 | | (18-4x)+72x=284 | | 12+6-4w=15 | | 34=10+4x | | W+1/2=-1/4w-7/8 | | 4.3=s+3.3 | | (18-4x)+18*2(x+2)+12(x+2)+24x=380 | | 3(6x-7)+8(4-2x)=17 | | x/4-7=13;24 | | -8x-18=-9x+25 | | 35=10+4x | | 0.005m-0.07=0.009 | | 1/3x+1/4x=16 | | -5+17x+15x+5=180 | | t=3+4.48 | | 1-6x=97 |

Equations solver categories